Abstract

SummaryThe atmospheric boundary layer (ABL), whose total height is about 1–1.5 km, is composed of the atmospheric surface layer (ASL) and the Ekman layer, which typically account for the lower 10% and the upper 90% of the ABL, respectively. The wind veering angle in the Ekman layer can be between 10° and 30°, which may be an important influence factor for the wind‐resistant design of kilometer‐scale super‐tall buildings. Unfortunately, there is very little research on this issue so far due to the difficulty in simulations of veering wind in wind tunnels and computational fluid dynamics (CFD) simulation platforms. In this study, the simulations of non‐veering and veering wind fields are presented, and furthermore, the wind loads of kilometer‐scale super tall buildings with several typical configurations in veering wind fields are numerically investigated. Specifically, the large eddy simulations (LES) of unsteady flow around three buildings, namely, a square building, a tapered building (tapering ratio: 6.6%), and a 4‐layer setback building with the same height and the same aspect ratio of 9:1, are systematically performed for the cases of veering wind and non‐veering wind. The wind pressures and wind forces on these buildings are obtained and comprehensively analyzed. The differences in the wind loads among the building configurations are highlighted, and the mechanisms are discussed based on the time‐averaged and instantaneous flow fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.