Abstract

The objective of the present simulation is to analyze the performance of a twin thermoacoustic prime mover using CFD in terms of frequency and pressure amplitude. Pure fluid media such as helium, argon, nitrogen and their binary gas mixtures are studied at a constant operating pressure of 5 bar. The GAMBIT 2.3.16 pre-processor is used for creating the geometry of twin prime mover and the CFD package FLUENT 6.3 is used for simulating the device with different combinations of gas mixtures. The geometrical parameters and temperature gradients across the stack are kept constant throughout the simulation. It is found that the pressure amplitude of the thermoacoustic oscillations is higher for pure argon, whereas the frequency of the oscillations is higher for helium (495 Hz) rather than other gases and mixtures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.