Abstract
The ripple tray is a sieve tray without downcomers, in which the liquid contacts with the upward gas counter-currently. The hydrodynamics performance in ripple tray columns was investigated with the computational fluid dynamics (CFD) method. Various superficial gas velocity and liquid loads were simulated for the tray with cylindrical cross sections using the Euler-Euler method. The modeling results were validated by comparing the calculated liquid height on the ripple tray with the experimental values. The developed CFD model is found to be able to predict the two phase flow patterns in ripple tray columns and provide useful information for further design of ripple tray.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.