Abstract

A two-dimensional transient Eulerian model integrating the kinetic theory for emulsion phase is used to simulate the bubbling and slugging gas-solid fluidized beds, including the Geldart B and D particles, respectively. CFD results show that utilizing an algebraic granular temperature equation, instead of a full granular temperature, one leads to a significant reduction in computational time without loosing accuracy. Different drag models have been examined in the current study. CFD results show that the Syamlal–O’Brien and Di Felice adjusted drag models, based on minimum fluidization velocity, are not suitable for the bed, including coarse particles (Geldart group B). The Gidaspow drag model displays better results in comparison with the others. A good agreement with the available experimental data and the researcher’s findings has been reached quantitatively and qualitatively. The proposed model can reasonably be used for simulation of slugging fluidized beds. This study reduces the computational error compared with the previous works.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call