Abstract

Abstract This paper describes the computational fluid dynamics (CFD) methodology to simulate the boiling flow in a typical Pressurized Water Reactor (PWR) 5 ⨯ 5 rod bundle. The method includes the Eulerian-Eulerian two-fluid model coupled with the improved wall heat partitioning model. The NUPEC PWR Subchannel and Bundle Test (PSBT) International Benchmark are used for validation. The simulated surface averaged void fraction agree well with the experimental data, which indicate the promising application of the present method for modeling the boiling flow in the fuel rod bundle. The main emphasis of current research has been given to the analysis of the phase distribution around and downstream the spacer grid, the effect of the spacer grid structure, including the mixing vanes, the springs and the dimples on the void fraction distribution is investigated. The findings can contribute to a better understanding of three dimensional flow boiling characteristics and can be used to assist in optimizing the spacer grid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call