Abstract

Droplet drift is always an accompaniment of pesticide spraying and can cause serious consequences. In this paper, we used a computational fluid dynamics software package (FLUENT) to analyze flow fields of spraying with air jet under different conditions in the tunnel model, and compared the effect of air jet on spray deposition and drift. Results of this study indicate that air jet can act directly on the spray droplets and affect their distribution and movement. Larger jet velocity has better performance on the drift reduction and droplet deposition. Droplets in the flow fields with larger jet velocity can get more kinetic energy and arrive at the root of crops easilier. When droplets are released straight down, larger velocity of droplets can be given and better performance can be achieved either in terms of drift reduction or droplet deposition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call