Abstract

Abstract The present work focuses on a numerical investigation of the solids residence time distribution (RTD) and the fluidized structure of a multi-compartment fluidized bed, in which the flow pattern is proved to be close to plug flow by using computational fluid dynamics (CFD) simulations. With the fluidizing gas velocity or the bed outlet height rising, the solids flow out of bed more quickly with a wider spread of residence time and a larger RTD variance ( σ 2 ). It is just the heterogeneous fluidized structure that being more prominent with the bed height increasing induces the widely non-uniform RTD. The division of the individual internal circulation into double ones improves the flow pattern to be close to plug flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.