Abstract
Segregation in particulate multiphase flow with binary solid mixture has extensive applications in industrial separation processes. Up to now there have been few attempts towards numerical simulation of segregation in particulate multiphase flow with binary mixture due to complexity of the problem. In view of this, the primary objective of present work is to simulate the problem by computational fluid dynamics (CFD) and to validate by comparison with experimental measurements. Eulerian-Eulerian approach, incorporating the granular temperature, an essential ingredient in the solids pressure and solids viscosity formulation, was used to model the flow field of multiphase flow and was solved by Fluent 6.0. The CFD simulation results have been validated by experiments of liquid fluidization of binary solid mixtures. Validation results show that CFD simulation predict segregation and solid volume fraction profile precisely, and in addition, it can supply a more realistic prediction of other hydrodynamic features of the multiphase flow, such as velocity vector of all phases and pressure drop. The success of such CFD simulations opens doors for many potential studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.