Abstract

A CFD study was performed to simulate the steady-state void distribution benchmark based on the NUPEC PWR Subchannel and Bundle Tests (PSBT). The void distribution benchmark provides measured void fraction data over a wide range of geometrical and operating conditions in a single subchannel and fuel bundle. This CFD study simulated the boiling flow in a single subchannel. A CFD code was used to predict the void distribution inside the single subchannel. The multiphase flow model used in this CFD analysis was a two-fluid model in which liquid (water) and vapor (steam) were considered as continuous and dispersed fluids, respectively. A wall boiling model was also employed to simulate bubble generation on a heated wall surface. The CFD prediction with a small diameter of vapor bubble shows a higher void fraction near the heated wall and a migration of void in the subchannel gap region. A measured CT image of void distribution indicated a locally higher void fraction near the heated wall for the test conditions of a subchannel averaged void fraction of less than about 20%. The CFD simulation predicted a subchannel averaged void fraction and fluid density which agree well with the measured ones for a low void condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call