Abstract

A computational model is developed in order to investigate pollutant emissions from power plant boilers to the atmosphere. A well-known method of pollutant reduction is the modification of the combustion conditions to prevent their formation, and 3D computational fluid dynamics (CFD) codes provide an effective tool for the analysis of the combustion process. In this paper CFD calculations were performed to analyze the effect of the amount of combustion air on the production and emission of nitrogen oxides, one of the main pollutants produced during the combustion process. For this analysis the appropriate modeling of the chemical and physical phenomena involved is important, because the production and transport of pollutant species strongly depend on the flow and temperature distributions in the furnace. Two case studies are presented: a pulverized coal-firing tangential boiler and a fuel-oil frontal boiler. The CFD calculations adopt a 3D-formulation of the mean flow equations in combination with the standard high-Reynolds-number k-ε turbulence model. The model domain consists of the whole boiler, from the burner nozzles up to the exit of the economizer. Due to their complex geometrical features and computational limitations bank tubes are not modeled individually, but are grouped in a total volume. A porous media region approach is then undertaken to model gas flow and heat transfer in each heat exchanger. Model validation is a difficult task due to the lack of available data from commercial utilities. Validation has been done using routinely measured global parameters. Relatively good agreement is obtained. Results show that increasing the amount of air reduce nitrogen oxides formation for the case of the tangential boiler, however for the frontal boiler case this behavior is not as evident. These results demonstrate that CFD simulations are a viable tool to study the effect some combustion parameters have on the production of pollutants. CFD results may help to establish trends that, in turn, may help to reduce pollutant emissions from power plant boilers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.