Abstract

ABSTRACTHuge amounts of produced water are generated in offshore oil production. The Compact Flotation Unit (CFU) is an excellent pretreatment technology of produced water with high separation efficiency, low residence, and small split ratio. The Computational Fluid Dynamics-population balance model (CFD-PBM) method is used in the present work to study the oil–water separation characteristics in the self-developed Beijing Institute of Petrochemical Technology Compact Flotation Unit (BIPTCFU) at both micro-scale and macro-scale, which would help us gain more insights into the mechanism and the influence of flow field on the oil–water separation process such as the oil droplets’ diameter distribution and separation efficiency. The effects of the inlet diameter, the height of the preliminary separation zone, and the width of the annular space on the oil–water separation characteristics of CFU were discussed systematically. It is illustrated that the appropriate increase of inlet velocity, decrease of annular gap width, and increase of the height in the preliminary separation zone can effectively promote the collision and coalescence process of oil droplets. However, the overlarge height of the preliminary separation zone and the too narrow width of the annular space will both have a significant negative effect on the migration and separation of oil and water and lead to the decrease of separation efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call