Abstract

Multiphase flow is commonly found in almost every process related to oil and gas industry. The precise prediction of the flow behavior is essential to provide safe and efficient hydrocarbon recovery. An accurate characterization of multiphase flow plays a major role in well design optimization and development of successful production and transportation facilitiess. Even though the hydrodynamic behavior of multiphase flow in various pipe geometries typically found in the industry has been widely studied, there is still very little known about the flow pattern and hydrodynamic conditions presented in horizontal annular geometry. Current work presents Computational Fluid Dynamics (CFD) simulation of two-phase oil-water flow in horizontal concentric annuli using different turbulence models and Eulerian-Eulerian continuous-disperse interphase drag model. Water was modelled as disperse phase, while oil was considered as continuous phase. Effect of water droplet diameter in the interphase model is extensively discussed in this paper. Results of the simulations are compared to the experimental data for a variety of liquid velocities and water cuts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call