Abstract

Abstract Mixing efficiency in two-phase gas–liquid agitated vessel is one of the important challenges in the industrial processes. Computational fluid dynamics technique (CFD) was used to investigate the effect of four different pitched blade impellers, including 15°, 30°, 45° and 60°, on the mixing quality of gas–liquid agitated vessel. The multiphase flow behavior was modeled by Eulerian–Eulerian multiphase approach, and RNG k − e was used to model the turbulence. The CFD results showed that a strong global vortex plays the main role on the mixing quality of the gas phase in the vessel. Based on the standard deviation criterion, it was observed that the axial distribution of the gas phase in the 30° impeller is about 55% better than the others. In addition, the results showed that the 30° impeller has a uniform radial distribution over the other impellers and the maximum gas phase holdup in the vessel. Investigation of the power consumption of the impellers showed that the 30° impeller has the highest power consumption among the other pitched blade impellers. Also, examine the effect of same power condition for pitched blade impellers showed that the 30° impeller has the best mixing quality in this condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.