Abstract

Gas–liquid contacting in tubular reactors was simulated using an Eulerian–Eulerian CFD approach in which accurate interphase momentum closure relations are incorporated, bubble-induced turbulence is accounted for, and population balance equations are used to describe bubble breakage and coalescence. The ability of two breakup kernels (Luo, H., Svendsen, H.F., 1996. Theoretical model for drop and bubble breakup in turbulent dispersions. A.I.Ch.E. Journal 42, 1225–1233; Lehr, F., Millies, M., Mewes, D., 2002. Bubble size distributions and flow fields in bubble columns. A.I.Ch.E. Journal 48, 2426–2443) and three coalescence kernels (Prince, M.J., Blanch, H.W., 1990. Bubble coalescence and breakup in air sparged bubble columns. A.I.Ch.E. Journal 36, 1485–1499; Luo, H., 1993. Coalescence, breakup and liquid recirculation in bubble column reactors. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim; Lehr, F., Millies, M., Mewes, D., 2002. Bubble size distributions and flow fields in bubble columns. A.I.Ch.E. Journal 48, 2426–2443) to accurately predict several flow parameters in pipe flow was tested. Good agreement between simulation and experimental results (radial profiles of gas holdup, turbulence intensity, and local Sauter bubble diameter) was achieved without the use of empirically derived relationships (such as Drift flux) by adjusting a single parameter which accounts for the deviation in the coalescence behaviour of tap water from that of pure water. The approach adopted in this investigation may thus be applicable to more complex hydrodynamic situations such as those encountered in mechanically agitated tanks and the need for extensive experimental testing may be replaced by single measurement of the effect interfacial properties have on coalescence rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call