Abstract

Abstract CFD simulation of the permeation process of a 19-core tandem ceramic membrane module was established to investigate flow field and resistance and its change in permeate flux to the membrane element position and the channel of each membrane element. The results show that when the volume flow rate changes from 26 m3·h−1 to 89 m3·h−1, the resistance of each part of the membrane module increases gradually. The increase in resistance loss in the membrane element is faster than the plates and the bell mouths. In a single ceramic membrane module, the maximum difference in flow rate of each membrane tube is 7.23%. In a single membrane tube, the outer ring channels 3–5, 3–6, 3–7, 3–8 are relatively slow. The maximum mass flow deviation from the mean is 2.7%. This work helps to clarify the flow mechanism within the modules, optimize the structure of the equipment and provide a reliable basis for the improvement of industrial ceramic membrane modules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.