Abstract

Erosion caused by solid particles in curve pipes is one of the major concerns in the oil and gas industries. Small solid particles flow with a carrier liquid fluid and impact the inner wall of the piping, valves, and other equipment. These components face a high risk of solid particle erosion due to the constant collision, which may result in equipment malfunctioning and even failure. In this study, the two-way coupled Eulerian-Lagrangian method with the Oka erosion and Grant and Tabakoff particle-wall rebound models approach is employed to simulate the liquid-solid flow in U-bend and helical pipes using computational fluid dynamics. The effects of operating parameters (inlet fluid velocity and temperature, particle density and diameter, and mass flow rate) and design parameters (mean curvature radius/pipe diameter ratio) are investigated on the erosion of these tubes walls. It is obtained that increasing the fluid velocity and temperature, particle mass flow and particle density increase the penetration rate, particle diameter affects the rate of penetration, and increasing mean curvature radius/pipe diameter ratio decreases the rate of penetration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.