Abstract
Pollutant control is one of the key concerns in the design of buildings, for the sake of occupational health, safety and environment sustainability. In particular, risk analyses related to emergency leakage of chemicals from storage tanks or chemical processes have aroused increasing attentions in recent days, as well as the effectiveness of mitigation measures in order to eliminate, reduce and control the risks. In this paper, a CFD methodology with nonreactive chemical gases treated as passive scalars has been developed to simulate the gas dispersion across urban environments, subject to atmospheric boundary layer wind conditions. Special treatments to maintain the consistency in atmospheric boundary layer flow profiles, turbulence modeling and boundary conditions have also been accounted for. The proposed CFD methodology for gas dispersion has been implemented in the open source CFD code — OpenFOAM. It has been validated by modeling the gas dispersions for two urban-related test cases: the CODASC street canyon test case measured in a laboratory wind tunnel and the Mock Urban Setting Test (MUST) field experiment conducted in the desert area of Utah State. Effects of turbulent Schmidt number (Sct have been primarily addressed in this study. Statistical analyses about the discrepancies between predicted and experimental data have been carried out and statistical performance measures are used to quantify the accuracy of the proposed methodology. Simulations results from passive scalar transport equation demonstrate good agreement with experimental data, though tracer gases heavier than the atmospheric air were used in both the measurements. Furthermore, sensitivity tests also indicate that the accuracy of the simulation results is sensitive to the value of turbulent Schmidt number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.