Abstract

The objective of the present study is to propose a novel design to improve the separation efficiency of the conventional square cyclone. For this purpose, the conical section of the conventional square cyclone with single-cone is modified to dual inverse-cone. In addition, the effect of second-cone length on the performance of cyclone is considered. A three-dimensional numerical simulation is done by solving the Reynolds averaged Navier-Stokes equations with the Reynolds Stress Model (RSM) turbulence model and applying the Eulerian-Lagrangian two-phase method. The turbulent dispersion of particles is predicted by the application of the Discrete Random Walk (DRW) model. The numerical results demonstrate that dual inverse-cone square cyclone although produces higher pressure drop but its separation efficiency is higher than the square cyclone with single-cone. This is due to a smaller separation zone and shorter path of particle movements which force the particles exit from the outlet section of the cyclone. Finally, using dual-inverse cone square cyclone reduces the 50% cut size about 10% and 30% for inlet velocities of 12 m/s and 28 m/s, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call