Abstract

The complex fluid dynamics of different flow situations at low Reynolds number for natural flying objects like birds and insects, needs to be clearly understood for arriving at an optimum design for sizes ranging from the small man-made ones to very large size high speed commercial aircrafts or the fighter aircrafts. Airfoil performance at low Reynolds numbers impacts the performance of a wide range of systems. Computational Fluid Dynamics (CFD) tools have been around for a couple of decades now. With the superfast growth of computing power, speed and accuracy of these mathematical tools have improved to a considerable extent. However, any CFD simulation employing turbulence models needs to be validated against reliable and accurate measurement data obtained from wind tunnels. The present work focuses on 2D numerical simulation of turbulent flow past a symmetric NACA4412 aerofoil, using C- grid topology, for a Reynolds number of 1 million and 3 million. The computation uses the CFD code RANS3D, an implicit, pressure-based finite volume type Reynolds averaged Navier-stokes solver in generalized non-orthogonal curvilinear coordinates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call