Abstract
Hollow fiber ceramic membrane technology demonstrates a great potential for high performance oxygen separation from air. Upscaling of single hollow fiber membrane for membrane stacks and modules is necessary toward practical applications. However, experimental methods are very time-consuming and highly cost. Mathematical modeling is a cost-effective technique and very flexible to evaluate different upscaling strategies. In this research, built upon the experimental results of a proof-of-concept hollow fiber membrane stack, a computational fluid dynamics-based Multiphysics stack model is developed and validated. Comprehensive simulations are conducted to understand the behaviors of stacks under different operating conditions. Different designs strategies are also evaluated toward optimizations of stack performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.