Abstract

With the development of high-temperature centrifugal pump, the temperature of the medium in the pump must be higher than the normal water temperature. It is particularly important to study the rotordynamic characteristics of the seal at high temperature due to it being the core component of the rotor system. This paper takes the high temperature water liquid seal as a research object to study its rotordynamic characteristics based on the fluid-solid-thermal coupling, the deformation of seal teeth under thermal and dynamic loads was calculated. Based on the test rig, the leakage flow rate and drag power loss of water liquid seal at 20 °C, 50 °C, and 86 °C temperatures were tested and compared with the CFD (Computational Fluid Dynamics) calculation. Meanwhile, the DEFINE-CG-MOTION and DEFINE-PROFILE control macro were used to establish the rotor whirling equation, the frequency-independent rotordynamic coefficients (K, k, C, c) and frequency-dependent rotordynamic coefficients (Keff,Ceff) were evaluated by transient CFD method. This analysis was done at three different pressure drops (2.08, 4.12, and 8.25 bar) and three rotational speeds (2000, 4000, and 6000 r/min). The results show that with the increase of water temperature, both the leakage flow rate and drag power loss decrease, indicating the 86 °C water seal has a better sealing capacity. From the rotordynamic perspective, with the increase of water temperature, the direct stiffness coefficient decreases, and the effective stiffness coefficient Keff for 20 °C water seal possesses a better stiffness capability than the other two temperature seals. The effective damping coefficient Ceff for 20 °C water seal is larger than the other two temperature seals, which means it is more stable for the rotor system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.