Abstract
The employment of different mathematical models to address specifically for the bubble nucleation rates of water vapour and dissolved air molecules is essential as the physics for them to form bubble nuclei is different. The available methods to calculate bubble nucleation rate in binary mixture such as density functional theory are complicated to be coupled along with computational fluid dynamics (CFD) approach. In addition, effect of dissolved gas concentration was neglected in most study for the prediction of bubble nucleation rates. The most probable bubble nucleation rate for the water vapour and dissolved air mixture in a 2D quasi-stable flow across a cavitating nozzle in current work was estimated via the statistical mean of all possible bubble nucleation rates of the mixture (different mole fractions of water vapour and dissolved air) and the corresponding number of molecules in critical cluster. Theoretically, the bubble nucleation rate is greatly dependent on components’ mole fraction in a critical cluster. Hence, the dissolved gas concentration effect was included in current work. Besides, the possible bubble nucleation rates were predicted based on the calculated number of molecules required to form a critical cluster. The estimation of components’ mole fraction in critical cluster for water vapour and dissolved air mixture was obtained by coupling the enhanced classical nucleation theory and CFD approach. In addition, the distribution of bubble nuclei of water vapour and dissolved air mixture could be predicted via the utilisation of population balance model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.