Abstract

A methodology is presented here for the mathematical modelling of moisture evaporation in a dispersed system in an industrial tower. An empirical model using characteristic drying curves was applied to calculate moisture evaporation from a droplet and particle. A simple method was developed to calculate the agglomeration process of the dispersed phase in the drying towers, using transient functions between the initial and final particle size distributions, at the nozzle and in the final product. The developed model and simulation results were validated on the basis of industrial spray tower experiments. High instability of the airflow due to the geometry of the dryer and the construction of the air inlets was observed. The general methodology applied within this CFD model is universal, and can be applied to the scaling-up of installations for dewatering in dispersed systems in order to determine configurations of feeding systems and control the product quality and safety of the process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call