Abstract

This paper presents a CFD analysis of the melt and flow-field instabilities in a close-coupled gas atomisation process (CCGA) caused by the gas–melt interactions. The melt mass flow is coupled to the atomiser internal pressure, which varies over time due to the unsteady flow field. A two-phase flow of Argon gas and melt particles is modelled using a coupled Euler-Lagrange framework. Three different initial gas-to-melt ratios (GMRs) of 5.5, 2.6 and 1.32 are considered to study the gas–melt interaction. The results show that in the case GMR = 1.32, sustained instability both in the melt and in the flow-field are distinctly observed, resembling physical atomisation process. This melt fluctuation corresponded to an alternating flow-field fluctuation; alternating between open- to closed-wake condition, where the local maxima of the melt corresponded to an open-wake condition, and the local minima of the melt corresponded to a closed-wake condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call