Abstract

The increase in application of fluidized bed combustion and gasification devices throughout world means that more consideration will be given to improve design and reduce emissions of these. Due to excellent thermal and mixing properties fluidized beds are generally preferred over the fixed bed combustors and gasifiers. Computational Fluid Dynamic (CFD) is a technique which helps to optimize the design and operation of fluidized bed combustor and gasifiers. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used practice to provide efficient design solutions in fluidized bed industry. In this paper an extensive review of CFD modeling to study combustion and gasification in fluidized beds has been done. This paper introduces the fundamentals involved in developing a CFD solution for fluidized bed combustion and gasification. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in fluidized bed combustion and gasifiers systems are described and main CFD models are presented. The aim is to illustrate what can be done and also to identify trends and those areas where further work is needed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.