Abstract

This study introduces a Vorticity Index (VI) and an Imminent Vortex Separation Condition (IVSC), which are considered valuable indicators to quantify the vorticity impact on vertical axis wind turbines (VAWTs) operation. The VI and IVSC are specifically applied to a H-Darrieus vertical axis wind turbine (VAWT). Findings show that these two parameters display a direct relationship with the aerodynamic forces that govern the performance of this type of VAWT. This analysis is accomplished via 2D-CFD simulations of a H-Darrieus with a symmetrical NACA 0018, powered by high winds (8 and 20 m/s), by using a Shear Stress Transport SST k-ω model. The 2D model used is validated for Class II winds (8 m/s), for tip speed ratios (λ) ranging from 0.4 to 0.9. Power coefficients (Cp) predictions are close to those obtained with both 3D simulations and with experimental data, reported in the technical literature. It is found with the numerical simulations developed, that despite the significant increase of the average rotor overall torque values, when the wind speed is augmented from 8 m/s to 20 m/s, the energy extracted by the rotor seems to be moderately lessened by the amplified turbulence and vorticity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call