Abstract

Computational Fluid Dynamics (CFD) approach, encoded on STAR-CCM+ was used to simulate air and highly viscous liquid two-phase slug flow in a 50.8-mm (2-in.) ID and 18.9-m (62ft.) long horizontal pipe. The Volume of Fluid (VOF) method, the Continuum Surface Force (CSF) model and the High Resolution Interface Capturing (HRIC) scheme were utilized. The liquid viscosity varied from 161 to 567mPas based on the experimental data. A sensitivity analysis of the sharpening factor, the angle factor, and the Interface Momentum Dissipation (IMD) model was carried out to obtain the best combination of parameters. Besides, comparison with experimental measurements concerning slug frequency, average liquid holdup and velocity profiles in the liquid region was carried out. The comparison shows a fair correspondence in terms of behavior and magnitude with the experimental results obtained by Particle Image Velocimetry (PIV). It was observed that the velocity profile is not fully developed near the bottom of slug body. Finally, extrapolation to the extended velocity conditions was performed. The reduction of translational velocity at higher mixture velocity conditions was investigated. A certain amount of gas passing from the tail to the front of the liquid slug body was visualized by three-dimensional velocity profiles. This phenomenon supports the reduction of translational velocity above the certain level of mixture velocity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call