Abstract

Boiling is one of the most important processes in almost every industrial heat exchanger arrangement. The present study examines the role played by nanofluids in increasing the heat transfer rate which could improve process efficiency as well as operational cost. The setup consists of a stainless steel vertical cylinder pressure vessel having a horizontal heating rod made of stainless steel submerged in a pool of working fluid (distilled water, alumina/water nanofluid of variable concentration). Simulations were carried out using a 2D geometrical domain in order to calculate values of heat transfer coefficient for different constant heat flux applied on the heater at atmospheric as well as sub atmospheric pressures. For the simulations, a transient Eulerian multiphase involving boiling model was used along with various sub-models involving drag, lift, heat and mass transfer models. The simulated results for the value of heat transfer coefficient were compared and validated from the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call