Abstract

A 2D Euler-Euler multiphase computational fluid dynamics (CFD) model in conjunction with the kinetic theory of granular flow (KTGF) was applied to describe the biomass pyrolysis in a spouted bed reactor. The primary interest in this work was the development of a CFD hydrodynamic model of the reactor coupled with a pyrolysis kinetic model for the prediction of biomass pyrolysis product yields (gas, bio-oil, and char). The kinetic model is based on three parallel reactions for the formation of the pyrolysis products and a secondary reaction of gas formation from bio-oil. The CFD hydrodynamic model suitably predicts the behavior of the spouting regime, and its simultaneous resolution with the kinetic model leads to a satisfactory quantitative agreement between the predicted and experimental values for bio-oil and gas yields. This study is evidence of the great potential of CFD techniques for the design, optimization, and scale-up of conical spouted bed reactors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call