Abstract

This paper investigates the performance of a solar cabinet drying system equipped with a heat pipe evacuated tube solar collector (ETSC) and thermal storage system with application of PCM. The thermal analysis of the solar collector, drying efficiency, CFD modeling of the system and quality evaluation of dried apple slices was considered. The performance of the dryer was simulated and validated by experimental data. The experiments was conducted at three air flow rates (0.025, 0.05 and 0.09 kg/s) for the drying system with and without using PCM for drying apple slices with the thickness of 5 mm. The result of thermal analysis showed that using PCM increases the input thermal energy about 1.72% and 5.12% for the air flow rates of 0.025 and 0.05 kg/s respectively, but excessive increase in air flow rate (up to 0.05 kg/s) decreases input thermal energy. The maximum overall drying efficiency was related to the system with PCM at the air flow rate of 0.025 kg/s and it was 39.9%. CFD simulation of the storage system and the dryer showed that there is a good agreement between the simulated and experimental. Using PCM has no adverse effect on the quality of the dried product.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.