Abstract

Most of the studies on mechanical oscillator flowmeters were conducted in the '80s and '90s when computational fluid dynamics (CFD) was not a viable scientific tool in flow metrology. Still, many topics related to the application of mechanical oscillator flowmeters require further investigation. In the article, a numerical model of a mechanical oscillator flowmeter is developed with the commercial software ANSYS Fluent. The model is validated against experimental data obtained at a water calibration stand. The influence of the selected turbulence model, dynamic mesh method, as well as grid and time step size is studied. The model's qualitative behavior is correct, allowing investigation into the flowmeter operation in detail. It can provide a base for the improvement of the flowmeter's performance. Relative differences in the frequency of oscillations did not exceed 4% for a DN50 flowmeter in the flow rate range (2-40) m3/h.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.