Abstract

The meshless Lattice Boltzmann Method (LBM) is introduced and employed to solve the complex two-phase flow problem of jet lubrication of meshing spur gears. Computational fluid dynamics (CFD) simulations based on LBM are carried out using the model of an oil jet impacting rotating gear presented by available experiments, which reveals how the liquid column is broken throughout the tooth tip cutting off the oil jet. Typical oil flow phenomena obtained by simulations are compared with experiments, demonstrating good qualitative agreement, which validates the feasibility of LBM to simulate the air–oil–structure interaction problems involved in the jet lubrication of spur gears. A three-dimensional (3D) simulation model of a spur gear pair lubricated by an oil jet is established, and simulations with different operating conditions are conducted. The evolution process of the oil jet while injecting into the meshing zone is captured, and the effects of jet velocities, jet heights and jet angles on the lubrication performance are investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call