Abstract

Abstract The present study applied computational fluid dynamics (CFD) to investigate the heat transfer of Newtonian (water) and non-Newtonian (0.3 %wt. aqueous solution of carboxymethylcellulose (CMC)) fluids in the presence of Al2O3 nanoparticles. To analyze the heat transfer rate, investigations were performed in a vertical helical coil as essential heat transfer equipment, at different inlet Reynolds numbers. To verify the accuracy of the simulation model, experimental data reported in the literature were employed. Comparisons showed the validity of simulation results. From the results, compared to the aqueous solution of CMC, water had a higher Nusselt number. In addition, it was observed that adding nanoparticles to a base fluid presented different results in which water/Al2O3 nanofluid with nanoparticles’ volume fraction of 5 % was more effective than the same base fluid with a volume fraction of 10 %. In lower ranges of Reynolds number, adding nanoparticles was more effective. For CMC solution (10 %), increasing concentration of nanoparticles caused an increase in the apparent viscosity. Consequently, the Nusselt number was reduced. The findings reveal the important role of fluid type and nanoparticle concentration in the design and development of heat transfer equipment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.