Abstract
Transportation process of nano scale zero valent iron (nZVI) in clay-rich soils is complicated and crucial for in-situ remediation of contaminated sites. A coupled computational fluid dynamic and discrete element method (CFD-DEM) was used to investigate the interplays of repulsive and attractive forces and the injection velocity of this process. The screened Coulomb’s law was used to represent the electrostatic interaction, and surface energy density was introduced to represent the effects of the van der Waals interaction. A phase diagram was constructed to describe the interplay between injection velocity and repulsive force (in terms of charge of colloids). Under the boundary and initial conditions in this study, clogging formed at low repulsive force (colloidal charge = −1 ×10-15 C), where increment of injection velocity (from 0.002 m/s to 0.02 m/s) cannot prevent clogging, as in the case of bare nZVI transportation with limited mobility; On the other hand, excessive repulsive force (charge = −4 ×10-14 C) is detrimental to nZVI-clay transportation due to repulsion from the concentrated colloids in pore throats, a phenomenon as in the overuse of stabilizers and was defined as the “membrane repulsion effect” in this study. At moderate charge (−1 ×10-14 C), injection velocity increment induced clogging due to aggregates formed at the windward of cylinder and accumulated at the pore throats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.