Abstract

The hydrodynamic and heat transfer characteristics of dry and wet particles in quasi-two-dimensional integral multi-jet spout-fluidized bed (IMJSFB) and conventional spouted bed (CSB) were numerically studied using Computational Fluid Dynamics-Discrete Element Method (CFD-DEM), where the effect of wet content of particles is realized by introducing the liquid bridge force. In addition, the agglomeration, particle mixing, circulation, collision and heat transfer of IMJSFB and CSB under different moisture content were quantitatively studied. It is found that with the increase of gas velocity, the circulation capacity of particles in both spouted beds increases first and then decreases, and particle circulation characteristics of IMJSFB are obviously better than those of CSB. The appropriate moisture content of particles is beneficial to enhance the heat transfer effect, and compared with CSB, IMJSSFB has more obvious advantages in dealing with wet particles. This study has important significance for the mixing and heat transfer of class D wet particles, which is less studied in fluidization technology, and provides theoretical and technical reference for the actual design and operation of spouted bed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call