Abstract

Particle migration with liquid flow is a fundamental problem during the highly efficient development of oil and gas. In this study, the aggregation and growth behaviors of fluid-flow-driven fine particles at the pore scale are investigated by considering their successive injection and migration process based on CFD-DEM. The particle aggregation and growth behaviors within porous media are obtained, by which the particle aggregation growth affects hydraulic properties and the risk of pore clogging are explored. Several experiments of particle injection were also conducted to verify the accuracy of the numerical model. Both simulation results and experimental phenomena illustrate that fine particle are prone to aggregate near the inlet and bottom wall with a discontinuous concentration, and the calculated instantaneous velocities of particle are larger at the outlet and near the wall affected by the deviation of pore size and position. The three modes of migration, aggregation and growth of particles due the successive invasion and deposition are captured at pores, and are mainly divided into independent and dependent growth behaviors based on the presence or absence of deposited particles before the arrival of new-injected particles. Results highlight the effect of injected fluid velocity, fluid viscosity and fine particle concentration on the particle migration and aggregation behaviors and its dependency with the risk of pore clogging, so as to provide theoretical guidance to the prevention of pore clogging in engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.