Abstract

The fluidization behavior of Geldart B particles in micro fluidized beds is investigated numerically using Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM) available in the open-source Multiphase Flow with Interphase eXchanges (MFIX) code. The effects of different bed inner diameters (D) of 8mm, 12mm, 16mm and various initial static bed heights (H) were examined. It is found that both decreasing the column diameter and increasing the bed height in a micro fluidized bed increases the minimum fluidization velocity (Umf). The observed overshoot in pressure drop that occurs before the onset of fluidization decreases in magnitude with increasing column diameter, however there is less sensitivity to bed height. Overall, the numerical results agree qualitatively with existing theoretical correlations and experimental studies. The simulations show that both column diameter and particle-wall friction contribute to the variation in minimum fluidization velocity. These two factors are coupled and hard to separate. The detailed influences of wall friction on minimum fluidization velocity are then investigated for a prescribed column diameter of 8mm by varying the wall friction from 0 to 0.4.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call