Abstract

Static electricity has an important effect on gas–solid fluidized bed reactor fluidization performance. In the process of fluidization, electrostatic interaction between particles will obviously accelerate particle agglomerate formation, which consequently reduces the fluidization performance. Pulsed gas flow injection is an efficient method to enhance particle mixing, thereby weakening the occurrence of particle agglomerate. In this study, the two-dimensional hybrid pulsed fluidized bed is established. The flow characteristics are studied by using the coupled CFD-DEM numerical simulation model considering electrostatic effects. Influences of different pulsed frequencies and gas flow ratios on fluidized bed fluidization performance are investigated to obtain the optimal pulsed gas flow condition. Results show that in the presence of static electricity, the bubble generation position is lower, which is conducive to the particle flow. Pulsed gas flow can increase the particle velocity and improve the diffusion ability. The bubble generation time is different at different frequencies, and the frequency of 2.5 Hz has the most obvious effect on the flow characteristics. Different gas flow ratios have significant impacts on the particle movement amplitude. When the pulse gas flow accounts for a large ratio, the particle agglomerate tends to be larger. Therefore, in order to improve the fluidization effect, the ratio of pulsed gas flow to stable gas flow should be appropriately reduced to 0.5 or less.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call