Abstract
Unsteady and three-dimensional Eulerian–Eulerian CFD simulations of bubble column reactors under operating conditions of industrial interest are discussed in this work. The flow pattern in this equipment depends strongly on the interactions between the gas and liquid phases, mainly via the drag force. In this work, a correlation for the drag force coefficient is tested and improved to consider the so-called swarm effect that modifies the drag force at high gas volume fractions. The improved swarm factor proposed in this work is the adjustment of the swarm factor proposed by Simonnet et al. (2008). This new swarm factor is suitable for very high gas volume fractions without generating stability problems, which were encountered with the original formulation. It delivers an accurate prediction of gas volume fraction and liquid velocity in a wide range of tested operating conditions. Results are validated by comparison with experimental data on bubble column reactors at different scales and for several operating conditions. Hydrodynamics is well predicted for every operating condition at different scales. Several turbulence models are tested. Finally, the contribution of Bubble Induced Turbulence (BIT), as proposed by Alméras et al. (2015), on mixing is evaluated via an analysis of the mixing time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.