Abstract

AbstractA novel domain element shape parameterization method is presented for computational fluid dynamics‐based shape optimization. The method is to achieve two aims: (1) provide a generic ‘wrap‐around’ optimization tool that is independent of both flow solver and grid generation package and (2) provide a method that allows high‐fidelity aerodynamic optimization of two‐ and three‐dimensional bodies with a low number of design variables. The parameterization technique uses radial basis functions to transfer domain element movements into deformations of the design surface and corresponding aerodynamic mesh, thus allowing total independence from the grid generation package (structured or unstructured). Independence from the flow solver (either inviscid, viscous, aeroelastic) is achieved by obtaining sensitivity information for an advanced gradient‐based optimizer (feasible sequential quadratic programming) by finite‐differences.Results are presented for two‐dimensional aerofoil inverse design and drag optimization problems. Inverse design results demonstrate that a large proportion of the design space is feasible with a relatively low number of design variables using the domain element parameterization. Heavily constrained (in lift, volume, and moment) two‐dimensional aerofoil drag optimization has shown that significant improvements over existing designs can be achieved using this method, through the use of various objective functions. Copyright © 2008 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.