Abstract

Submarine buried pipelines interact with shallow soil layers that are often loose and prone to fluidization/liquefaction. Such occurrence is a possible consequence of pore pressure build-up induced by hydrodynamic loading, earthquakes, and/or structural vibrations. When liquefaction is triggered in sand, the soil tends to behave as a viscous solid–fluid mixture of negligible shear strength, possibly unable to constrain pipeline movements. Therefore, pipelines may experience excessive displacement, for instance, in the form of vertical flotation or sinking. To date, there are no well-established methods to predict pipe displacement in the event of liquefaction. To fill such a gap, this work proposes a computational fluid dynamics (CFD) framework enriched with soil mechanics principles. It is shown that the interaction between pipe and liquefied sand can be successfully analyzed via one-phase Bingham fluid modeling of the soil. Postliquefaction enhancement of rheological properties, viscosity, and yield stress can also be accounted for by linking soil–pipe CFD simulations to a separate analysis of the pore pressure dissipation. The proposed approach is thoroughly validated against the results of small-scale pipe flotation and pipe dragging tests from the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.