Abstract

With the growth of computational mechanics, the virtual hydraulic machines are becoming more and more realistic to get minor details of the flow, which are not possible in model testing. In present work, 3D turbulent real flow analyses in hydraulic Francis turbine have been carried out at three guide vane opening and different rotation speed using Ansys CFX computational fluid dynamics (CFD) software. The average values of flow parameters like velocities and flow angles at the inlet and outlet of runner, guide vane and stay vane of turbine are computed to derive flow characteristics. To improve the energy performance at the preliminary design stage of the turbine, numerical flow simulations should be carried out. This CFD approach reduces costs and time in comparison with the experimental approach and makes it possible to improve and analyze turbine performance and its design before the model is manufactured. The computational complex of programs provides an opportunity to see the picture of pressure distribution, the field of velocity vectors and the movement of fluid particles for substantiation and analysis of results. The results of the computational study confirm that the hydraulic efficiency of a hydraulic turbine largely depends on the losses in the guide vane and the runner, which means it is these elements that should be given the most attention, their design and coordination of the flow in them. Analysis of the energy loss in the flow part of the Francis turbine was carried out using programs for calculating fluid flow in two-dimensional and three-dimensional formulation. The obtained calculated data correspond to the previously known experimental recommendations for high-pressure Francis turbine. The issues of increasing the energy performance of a projected high-pressure Francis turbine were considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call