Abstract

More than 90% of the buildings in Taiwan use reinforced concrete (RC) structures. Before or after fire damage, whether the RC structure accord Performance Based Design (PBD) fire code or safe evaluation are important in building fire protection verification. However, obtaining fire thermal parameters detailed quantitative data from building fire tests or actual building fires are difficult. Therefore, computational fluid dynamic (CFD) integration to simulate fire scenarios has been widely utilized in fire protection engineering. This study utilizes Fire Dynamics Simulator (FDS) fire model and PHOENICS field model software to simulate fire development and beams inner temperature variation. The structural strength estimated using beam cross-sections temperature to investigate dynamic ultimate bending moment (Mu) of RC beams. This integration method can investigate the influence of different beam positions, fire intensity, fire duration and fire damage sustained (two or three faces heated) for RC beams fire protection safe verification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call