Abstract

The pilot-control globe valve (PCGV) is a new kind valve with simple structures and low driving energy consumption. It can utilize the pressure difference before and after the valve to control the action of the valve core. However, systematic theoretical research and numerical analysis are deficient at present. In this paper, the mathematical model of PCGV is established and Computational Fluid Dynamics (CFD) method is employed to numerically simulate its dynamic characteristics. Through the analysis of the internal flow field distribution, its working principle is verified. Then three different opening processes with the same spring stiffness are analyzed under different static inlet pressures, and the best design point is obtained by studying the characteristic curves of the valve core’s displacement. The relationship of static inlet pressure and the valve core’s displacement is summarized and the selection formula for the valve design is generalized which can reduce the various design work for further optimization and engineering applications of PCGV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call