Abstract
PurposeThe purpose of this study is analysis on fluid flow characteristics inside a modified designed spiral bubble column photo-bioreactor. Available fluid dynamic simulation of bubble column reactor (BCR) (which is well-known conventional photobioreactor) had shown significance contribution over the past two decades, where the fluid dynamics of the culture medium and mixing will influence the average irradiance and the light regimen to which the cells are exposed. This enhances the growth. To develop this, and also to cut down the cost parameter involving the production of biodiesel from algae, the growth rate of algae has to be enhanced.Design/methodology/approachSome design modification through a staggered spiral-path inside the bubble column design had been proposed and comparative simulation of the modified design has been reported. Three-dimensional simulations of gas–liquid flow both in the BCR and spiral path column reactor have been carried out using the Euler–Euler approach. Various graphs are plotted, and from comparing, it has been seen that the proposed reactor will enhance better mixing rate, which could help the growth rate in microalgae in the present proposed model. In this paper, an earnest attempt had made to carry out computational simulation of conventional BCR and designed reactor used for cultivation of microalgae which had analyzed using commercial code ANSYS 14.FindingsFrom this work, it was observed that the average turbulence kinetic energy fluctuates more in designed reactor over the conventional photo bioreactor, which will in turn increase diffusivity and enhance transfer of mass, momentum and energy. The results provide comprehensive information concerning effect of fluid flow characteristics inside a modified designed spiral bubble-column photo-bioreactor.Originality/valueSome of our earlier published results (www.scientific.net/AMM.592-594.2427) are also referred in this paper. This work had been performed under the financial aid from RPS project (no. 8,023/RID/RPS/27/11/12), sponsored by All India Council for Technical Education.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.