Abstract

Computational fluid dynamics (CFD) analysis was performed for a two-phase air-water flow through a horizontal to vertical 900 elbow with a 12.7 mm pipe diameter. Three different air velocities of 15.24, 30.48, and 45.72 m/sec along with three different water velocities of 0.1, 1.0, and 10.0 m/sec were used in this study. To analyze the flow behavior in the elbow, pressure and velocity profiles at six different upstream and downstream locations of the elbow were compared. Computational fluid dynamics (CFD) analysis was performed for 9 different cases using FLUENT commercial code. A mixture model was used to account for different gas and liquid velocities to solve continuity, momentum and energy equations. CFD analysis results showed a decrease in pressure as fluid leaves the elbow in addition to a larger pressure drop at higher air velocities. No significant change in pressure was observed when water velocity was increased from 0.1 to 1.0 m/sec compared to water velocity change from 1.0 to 10.0 m/sec. The normalized pressure drop was larger at lower air velocities compared to higher water velocities. CFD analysis results were compared with available experimental data showing a reasonably good agreement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call