Abstract
This study discussed the effect of ribbed fin, which was suggested by the authors, on the enhancement of heat transfer and flow characteristics of fluid in a solar air heater. The ribbed fin has a rectangular rib at the base and side surfaces of the fin. Thus, it can increase the heat transfer coefficient in the fluid field of a solar air heater as well as extend the heat transfer area. The simulation was performed with various Reynolds numbers, relative heights, and pitches of the rib. The presence of the rib enhances the heat transfer performance by 3.497 times over a smooth fin. However, the addition of the rib also increases pressure drop. Thus, the thermo-hydraulic performance, which considers both heat transfer enhancement and pressure drop increase, was also discussed. Furthermore, this study developed correlations for the Nusselt number and friction factor as a function of geometric condition of the rib and Reynolds number. The correlations accurately predicted the Nusselt number for the base and side surfaces of the fin and friction factor with mean absolute percent errors of 4.24%, 4.53%, and 7.33%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.