Abstract

Mixing units is one of the prime components in various chemical processing industries. The mixing equipment produces a product by combing different liquids at various properties. Generally, the mixing units are axial and radial flow types. The rushton turbine is one of the radial flow types and had higher power number due to fluid resistance as disadvantage. This works aims to investigate the four bladed rushton turbine impellers at eight angles for finding optimum power without compromising radial flow patterns. The shaft eccentricity hydrodynamics effect is also analysed on the unbaffled stirred vessels. The variance of eccentric and coaxial agitation is clearly evaluated on the several power number and impeller blade angle by experimental and numerical analysis. The CFD analysis is made on the mixing chamber to find the optimum inputs of the mixing chamber numerically by varying the blade angles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.