Abstract

When dealing with fully faired human powered vehicles (HPVs) for speed or endurance record attempts, the need for internal ventilation of the rider arises. Different solutions have been proposed in the literature and in practice by designers and builders of these bicycles. The present paper proposes an analytical approach to design the frontal air inlet according to the VO $$_{2}$$ max of the rider in speed competitions. A 3D computational fluid dynamics (CFD) model is presented to analyse the external and internal flow interaction with respect to three design parameters: the presence of wheel covers, the location of the rear vent and its geometry. The CFD results predict that the wheel covers save 23 W of aerodynamic power at 125 km/h. A secondary but significant design parameter is the rear vent position that can provide a further reduction of 11 W at 125 km/h if properly located. Finally, the effect of the rear vent geometry was below the model confidence level, resulting in a likely negligible design parameter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.