Abstract

This paper presents a simulation of the economizer zone, which allows for the condition of the shell-side flow and tube-side and tube-wall, thermal fields, and of the shell-tube heat-exchange. Selection of the economizer zone from the thermal power plant only because, it is found trends of failure that the economizer is the zone where the leakages are found more. The maximum number of cause of failure in economizer unit is due to flue gas erosion. The past failure details revels that erosion is more in U-bend areas of Economizer Unit because of increase in flue gas velocity near these bends. But it is observed that the velocity of flue gases surprisingly increases near the lower bends as compared to upper ones. The model is solved using conventional CFD techniques by STAR- CCM+ software. In which the individual tubes are treated as sub-grid features. A geometrical model is used to describe the multiplicity of heat-exchanging structures and the interconnections among them. The Computational Fluid Dynamics (CFD) approach is utilised for the creation of a three-dimensional model of the economizer coil. With equilibrium assumption applied for description of the system chemistry. The flue gas temperature, pressure and velocity field of fluid flow within an economizer tube using the actual boundary conditions have been analyzed using CFD tool. Such as the ability to quickly analyse a variety of design options without modifying the object and the availability of significantly more data to interpret the results. This study is a classic example of numerical investigation into the problem of turbulent reacting flows in large scale furnaces employed in thermal power plants for the remediation of ash deposition problems. And the experimental setup is from Chandrapur Super Thermal Power Station, Chandrapur having the unit no IV of 210 MW energy generations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call